Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics
نویسندگان
چکیده
منابع مشابه
Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics
We report on a question, posed by L. Ornea and M. Verbitsky in [32], about examples of compact locally conformal symplectic manifolds without locally conformal Kähler metrics. We construct such an example on a compact 4-dimensional nilmanifold, not the product of a compact 3-manifold and a circle.
متن کاملLocally conformal Kähler manifolds with potential
A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...
متن کاملReduction for Locally Conformal Symplectic Manifolds
It is shown how one can do symplectic reduction for locally conformal symplectic manifolds, especially with an action of a Lie group. This generalizes well known procedures for symplectic manifolds to the slightly larger class of locally conformal symplectic manifolds. The whole setting is very conformally invariant.
متن کاملON THE GROUP OF DIFFEOMORPHISMS PRESERVINGA LOCALLY CONFORMAL SYMPLECTIC STRUCTUREStefan
The automorphism group of a locally conformal symplectic structure is studied. It is shown that this group possesses essential features of the symplec-tomorphism group. By using a special type of cohomology the ux and Calabi homomorphisms are introduced. The main theorem states that the kernels of these homomorphisms are simple groups, for the precise statement see chapter 7. Some of the method...
متن کاملLocally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces
It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4, 5, 6, 7 and 8. It is shown that any n-dimensional (4 ≤ n ≤ 8)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Manifolds
سال: 2017
ISSN: 2300-7443
DOI: 10.1515/coma-2017-0011